SUBSOIL AND FOUNDATION INVESTIGATION SUNLIGHT SUBDIVISION – DUPLEX LOTS 65 TO 70 STEAMBOAT SPRINGS, COLORADO

Prepared by

NWCC, Inc. 2580 Copper Ridge Drive Steamboat Springs, CO 80487

Prepared for

Sunlight, LLC Tom Fox P.O. Box 881365 Steamboat Springs, CO 80488

NWCC Project NO. 19-11414

April 19, 2019

TABLE OF CONTENTS

1.0	CONCLUSIO	DNS	1
2.0	PURPOSE A	AND SCOPE OF WORK	1
3.0	PROPOSED	CONSTRUCTION	1
4.0	SITE COND	TIONS	1
5.0	FIELD INVE	STIGATION	2
5.0	LABORATO	RY INVESTIGATION	2
7.0	SUBSURFA	CE CONDITIONS	2
3.0	FOUNDATIO	ON RECOMMENDATIONS	4
9.0		E FOUNDATION RECOMMENDATIONS	
10.0		AB RECOMMENDATIONS	
11.0		R DRAINAGE SYSTEM RECOMMENDATIONS	
12.0		ONS WALL AND RETAINING STRUCTURE RECOMMENDATIONS	
13.0		AGE RECOMMENDATIONS	
14.0		ING RECOMMENDATIONS	
15.0	LIMITATION	IS	9
List of	Figures and	d Tables	
Figure #	‡ 1	Vicinity Map	
Figure #	‡ 2	Site Plan/Test Hole and Test Pit Locations	
Figure #	# 3	Logs of Exploratory Test Holes	
Figure #	/ 4	Logs of Exploratory Test Pits	
Figure #	4 5	Legend and Notes	
Figures	#6 - 16	Swell-Consolidation Test Results	
Figure #	/ 17	Hung Partition Wall Details	
Figure #	/ 18	Perimeter/Underdrain Details	
Table 1		Summary of Laboratory Test Results	

1.0 CONCLUSIONS

Based on results of the field and laboratory investigations, NWCC, Inc. (NWCC) recommends the proposed duplexes to be constructed within Lots 65 to 70 in the Sunlight Subdivision be founded on straight-shaft skin friction/end bearing piers or helical screw piles advanced through the topsoil and organic materials, existing fill materials and organic clays and into the underlying natural clays.

2.0 PURPOSE AND SCOPE OF WORK

This report presents the results of the Subsoil and Foundation Investigation completed for Duplex Lots 65 to 70 in Filing No. 1 of the Sunlight Subdivision located in Steamboat Springs, Colorado. The approximate location of the project site is shown in Figure #1.

The scope of our work included obtaining data from a visual inspection of the site; the excavation and logging of three (3) test pits and drilling of four (4) test holes; sampling of the overburden soils, and the laboratory testing of the samples obtained. This report summarizes the results of the field investigation and the laboratory test results, as well as recommendations for foundation design, floor slabs, foundation walls and site grading based on the assumed construction and the subsurface conditions encountered.

3.0 PROPOSED CONSTRUCTION

NWCC understands the proposed construction will consist of six (6) duplexes within Lots 65 through 70 of the subdivision. NWCC has assumed the lower levels of the duplexes will be constructed with concrete slab-on-grade floor systems placed slightly above the existing ground surface to up to 10 feet below the existing ground surface (bgs), if basement levels are opted for. We have assumed the loads generated by the proposed building structures will be variable and range from light to moderate, typical of this type of residential construction.

Overlot site grading and construction of the roadways and utilities has been completed. NWCC has assumed that the remaining cuts (excluding foundation excavations) and fills constructed within each of the individual lots will be on the order of 3 to 6 feet or less to bring the sites to the finish grades, with the exception of Lots 69 and 70.

4.0 SITE CONDITIONS

The project site is located at the northwest corner of the Sunlight Subdivision in Steamboat Springs, Colorado. The site is bordered on the west, north and northeast by undeveloped rural land; on the east and southeast by the remainder of the subdivision; and further to the west by existing commercial properties. Within the past three years, the subdivision roads have been constructed and paved and the majority of the underground utilities have been installed.

The topography of the project site is variable. Lots 65 through 68 are fairly flat due to previous site grading, and topography generally slopes gently down to the northwest, with an elevation difference of approximately 2-4 feet across each lot. Lots 65 through 68 appear to have fill overlying a historic drainage channel. Lots 69 and 70 have variable, natural topography. Topography of Lot 69 slopes moderately to gently down to the southwest with an elevation difference of approximately 8-10 feet across the lot, and Lot 70 generally slopes strongly to moderately down to the southwest with an elevation difference of approximately 15 to 25 feet across the lot.

5.0 FIELD INVESTIGATION

Three (3) foundation test pits were previously advanced on September 11, 2018. Four (4) foundation test holes were recently drilled at the site on March 25, 2019. Approximate test hole and test pit locations are shown in Figure #2. Test pits were excavated with a Komatsu PC 400 LC trackhoe, and test holes were advanced with an all-terrain drill rig using 4-inch diameter continuous flight augers. Test pits and test holes were logged, and samples were obtained by an engineer from NWCC. Graphic logs of the exploratory test holes are shown in Figure #3 and graphic logs of the exploratory test pits are shown in Figure #4. The associated Legend and Notes are shown in Figure #5.

6.0 LABORATORY INVESTIGATION

Samples obtained from the test pits were examined and classified in the laboratory. Laboratory testing included standard index property tests including natural densities and moisture contents, dry unit weights, grain size analyses and liquid and plastic limits. Swell-consolidation testing was also conducted on relatively undisturbed samples of the fill materials, organic clays and natural clays. Swell-consolidation test results are shown in Figures #6 through #16, and the results are discussed in the following section. Laboratory testing was conducted in general accordance with applicable ASTM specifications.

7.0 SUBSURFACE CONDITIONS

The subsurface conditions encountered in the test holes and test pits excavated across the site were variable and generally consisted of a layer of natural topsoil and organic materials or clay fill materials overlying natural clays to the maximum depth investigated, 24 feet beneath existing ground surface (bgs).

A layer of natural topsoil and organic materials approximately 12 inches in thickness was encountered at the ground surface in Test Hole 4. A layer of clay fill materials was encountered at the ground surface in all of the test pits and in Test Holes 1, 2 and 3, extending to approximately 4 to 6 feet bgs.

Fill materials consisted mainly of clays with occasional organics, gravels and bedrock fragments that were nil to sandy, moderately to highly plastic, medium stiff to stiff, very moist to moist and brown to

dark brown in color. Samples of the fill materials classified as CL to CL-CH soils in accordance with the Unified Soil Classification System (USCS).

Organic clays were encountered beneath the fill materials in Test Pits A and B, extending to 6 feet bgs in Test Pit A and to 10 ½ feet bgs in Test Pit B. The organic clays were nil to slightly sandy with rootlets, low plastic, soft to medium stiff, moist, brown to dark gray in color, and had a slight organic odor. A sample of the organic clays classified as an OL soil in accordance with the USCS.

Clays were encountered beneath the topsoil and organic materials, fill materials and organic clays in all of the test holes and test pits, and extended to the maximum depths advanced in each test hole/test pit. The clays were nil to sandy with occasional gravel lenses, low to highly plastic, fine to coarse grained with occasional cobble to boulder-sized bedrock fragments, very stiff to hard, moist to very moist, calcareous and brown to tan in color. Samples of the clays classified as CL, CL-CH and CH soils in accordance with the USCS.

Swell-consolidation testing conducted on the fill materials indicate the materials tested will exhibit a moderate degree of consolidation under light loadings and then a low to moderate swell potential when wetted under a constant load. Swell-consolidation testing conducted on a relatively undisturbed sample of the organic clays indicates that the material tested will exhibit a low degree of consolidation when wetted under a constant load. Swell-consolidation testing conducted on relatively undisturbed samples of the natural clays indicate that the materials tested will exhibit moderate to high swell potential when wetted under a constant load. Swell consolidation tests are summarized in Table A below and are also shown in Figures #6 through #16. All other laboratory test results are summarized in the attached Table 1.

TABLE A SUMMARY OF SWELL TEST RESULTS

Soil Type	Consolidation	Range of Swell (%)							
	<0	Low 0 to <2	Moderate 2 to <4	High 4 to <6	Very High >6				
	Ŋ	lumber of S	Samples and l	Percent					
Natural Clays	0	0	5	2	0				
Clay Fill	0	1	2	0	0				
Organic Clays	1	0	0	0	0				
Percent	9%	9%	64%	18%	0%				

Groundwater was encountered in Test Hole 2 at a depth of approximately 22 feet bgs at the time of drilling and at 20 feet bgs when measured 3 days after drilling. Groundwater was also encountered in Test Hole 3 at approximately 19 feet bgs when measured 3 days after drilling. Groundwater seepage was not encountered in any of the test pits at the time of excavation and no signs of a seasonal high groundwater table were observed. It should be noted that the groundwater conditions at this site can be expected to fluctuate with precipitation and seasonal runoff.

Based on the subsurface conditions encountered at the site, the laboratory test results and our review of the available literature, NWCC recommends that a Site Class C be used for the foundation designs in accordance with Table 20.3-1 in Chapter 20 of ASCE 7-10.

8.0 FOUNDATION RECOMMENDATIONS

Based on the subsurface conditions encountered in the test holes and test pits, the results of the field and laboratory investigations and our assumptions regarding the proposed construction, NWCC believes an economically feasible and safe type of foundation system is straight-shaft skin friction/end bearing piers drilled into the underlying natural clays. Foundation movement should be within tolerable limits if the following design and construction precautions are observed.

- 1) A minimum pier diameter of 12 inches and a minimum pier length of 20 feet are recommended. A maximum length to diameter ratio of 25 is also recommended.
- Piers should be designed using an allowable skin friction value of 900 psf for the portion of the pier drilled into the undisturbed natural clays. The upper 5 feet of pier penetration should be neglected in skin-friction calculations. A drill rig of sufficient size, type and operating condition should be used so bottom of the piers can be cleaned out properly and the minimum length requirement can be met. If bottom of piers are properly cleaned and approved by an engineer from this office, then an allowable end bearing pressure of 3,500 psf can be used for the natural clays.
- 3) Piers should be reinforced their full length with at least one #5 reinforcing rod for each 16 inches of pier perimeter.
- 4) Piers should be properly cleaned and dewatered prior to steel and concrete placement. A maximum of 3 inches of water in the bottom of the piers will be acceptable. If water depth is greater than 3 inches, tremie or pump methods must be used to place the concrete.
- A 4-inch void should be provided beneath grade beams to prevent the swelling soils from exerting uplift forces on the grade beams and to concentrate pier loadings. A void should also be provided beneath necessary pier caps.

- Due to the presence of cobbles and boulders in the clays, pier drilling operations could become complicated. The drilling subcontractor should be made aware of the subsurface conditions and mobilize drilling equipment with sufficient size and operating condition to achieve the required depths. The use of core buckets and/or larger augers may be required to remove and/or penetrate through the larger cobble and boulder sized bedrock fragments.
- 7) A representative of this office should observe the pier drilling operations on a full-time basis.

9.0 ALTERNATE FOUNDATION RECOMMENDATIONS

NWCC believes an alternate deep foundation consisting of helical screw piles advanced into the underlying clays may be a cost effective alternative to the drilled piers

Utilizing this type of foundation, each column is supported on a single or group of screw piles and the structures are founded on grade beams or pier caps that are supported by a series of piles. Load applied to the piles is transmitted to the natural soils through the end bearing pressure at the helices of the screw pile. Foundation movement should be less than ½-inch if the following design and construction conditions are observed.

The helical screw pile foundation system should be designed by a qualified engineer, using industry standards and be installed by a licensed/certified installer. If pile groups are required, we recommend a minimum pile spacing of 3 times the largest helix to achieve the maximum capacity of each individual pile. Lateral loads should be resisted by the use of battered piles or tiebacks or through passive soil pressures against foundation walls or grade beams.

NWCC recommends the following:

- Minimum 8-inch diameter helix;
- Minimum installation torque of 4,000 ft-lbs;
- Minimum penetration depth of 8 feet for upper-most helix;
- Full-time installation observation by a qualified special inspector;
- Review of the Contractor's quality control plan regarding instrumentation calibration and testing, materials QC, and pile installation procedures;
- Additional test piles should be advanced across the site to confirm torque versus depth relationships.

10.0 FLOOR SLAB RECOMMENDATIONS

NWCC has assumed the proposed duplexes will be constructed with concrete slab-on-grade floor systems placed at varying depths across the site. On-site soils, with the exception of the existing topsoil and organic materials, are capable of supporting slab-on-grade construction. However, floor slabs present a very difficult problem where swelling materials are present near floor slab elevation because

sufficient dead load cannot be imposed on them to resist the uplift pressure generated when the materials are wetted and expand. Based on the moisture-volume change characteristics of the clays encountered at this site, we recommend that structural floor systems over well-ventilated crawlspaces or void form be used in the proposed residences.

If the client elects to construct concrete slab-on-grade floor systems, we recommend the following special design and construction precautions be followed so that the amount of movement in the floor slabs can be reduced, if the clays become wetted.

- 1) Floor slabs should be separated from all bearing walls, columns and their foundation supports with a positive slip joint. We recommend the use of ½-inch thick cellotex or impregnated felt.
- 2) Interior non-bearing partition walls resting on the floor slabs should be provided with a slip joint, preferably at the bottom, so that in the event the floor slab moves, this movement is not transmitted to the upper structures. This detail is also important for wallboard and doorframes and is shown in Figure #17.
- A minimum 6-inch gravel layer should be provided beneath all floor slabs to act as a capillary break and to help distribute pressures. Prior to placing the gravel, the excavation should be shaped so that if water does get under the slab, it will flow to the low point of the excavation. In addition, all of the topsoil and organic materials should be removed prior to placement of the underslab gravels or new structural fill materials.
- 4) Floor slabs should be provided with control joints placed a maximum of 10 to 12 feet on center in each direction to help control shrinkage cracking. The location of the joints should be carefully checked to assure that the natural, unavoidable cracking will be controlled. The depth of the control joints should be a minimum of ¼ the thickness of the slab.
- 5) Underslab soils should be kept as close as possible to their in-situ moisture content. Excessive wetting or drying of these soils prior to placement of the floor slab could result in differential movement after the slabs are constructed.
- It has been our experience that the risk of floor slab movement can be reduced by removing at least 3 feet of the expansive materials and replacing them with a well compacted, non-expansive fill. If this is done, or if fills are required to bring the underslab soils to the desired grade, the fill should consist of non-expansive, granular materials. The fill should be uniformly placed and compacted in 6 to 8 inch lifts to at least 95% of the maximum standard Proctor density at or near the optimum moisture content, as determined by ASTM D-698/AASHTO T-99.

The above precautions and recommendations will not prevent floor slab movement in the event the clays beneath the floor slabs undergo moisture changes. However, they should reduce the amount of damage if such movement occurs. As noted previously, the only way to eliminate the risk of all floor slab movement is to construct a structural floor over a well-vented crawl space or void form materials.

11.0 PERIMETER DRAINAGE SYSTEM RECOMMENDATIONS

NWCC has assumed the majority of the duplexes will most likely be constructed with the lower level slabs being situated above the finished ground surfaces at the sites. However, lower basement levels may be constructed under several of the duplexes. To enhance site drainage and improve foundation and slab-on-grade performance, NWCC recommends perimeter drainage systems be installed around the building perimeters. Localized perched water or runoff can infiltrate the structures at the foundation levels. This water can be one of the primary causes of differential foundation and slab movement. Especially when expansive soils are encountered.

Drains should be located around entire perimeter of the lower levels and be placed and at least 12 inches below any floor slab or crawl space levels and at least 6 inches below the foundation voids and bottom of the foundation walls. NWCC recommends the use of perforated PVC pipe for the drainpipe, which meets or exceeds ASTM D-3034/SDR 35 requirements, to minimize potential for pipe crushing during backfill operations. Holes in the drainpipe should be oriented down between 4 o'clock and 8 o'clock to promote rapid runoff of water. Drainpipe should be surrounded with at least 12 inches of free draining gravel and should be protected from contamination by a filter covering of Mirafi 140N subsurface drainage fabric or an equivalent product. Drains should have a minimum slope of 1/8 inch per foot and be daylighted at positive outfalls protected from freezing, or be led to sumps from which water can be pumped. The use of interior laterals, multiple daylights or sumps may be required for the proposed structure. Caution should be taken when backfilling so as not to damage or disturb the installed underdrains. NWCC recommends the drainage systems include a cleanout every 100 feet, be protected against intrusion by animals at outfalls and be tested prior to backfilling. NWCC also recommends the client retain our firm to observe the underdrain systems during construction to verify that they are being installed in accordance with recommendations provided in this report and observe a flow test prior to backfilling the system.

In addition, NWCC recommends an impervious barrier be constructed to keep water from infiltrating through the voided areas and/or under the foundation walls. Barrier should be constructed of an impervious material, which is approved by this office and placed below the perimeter drain and up against the sides of the foundation walls. A typical perimeter/underdrain detail is shown in Figure #18.

Placement of and impervious membrane and/or properly compacted clays in crawl space areas to the top of the footings or at least 12 inches above the top of the foundation voids or bottom of the foundation walls should help reduce the moisture problems in these areas.

12.0 FOUNDATIONS WALL AND RETAINING STRUCTURE RECOMMENDATIONS

Foundation walls and retaining structures, which are laterally supported and can be expected to undergo only a moderate amount of deflection (at rest), may be designed for a lateral earth pressure computed on the basis of an equivalent fluid unit weight of 45 pcf for imported, free draining granular backfill and 60 pcf for the on-site soils.

Cantilevered retaining structures on the site can be expected to deflect sufficiently to mobilize the full active earth pressure condition. Therefore, cantilevered structures may be designed for a lateral earth pressure computed on the basis of an equivalent fluid unit weight of 35 pcf for imported, free draining granular backfill and 50 pcf for the on-site soils.

Foundation walls and retaining structures should be designed for appropriate hydrostatic and surcharge pressures such as adjacent buildings, traffic and construction materials. An upward sloping backfill and/or natural slope will also increase the earth pressures on foundation walls and retaining structures.

NWCC recommends imported granular soils for backfilling the basement foundation walls and retaining structures because their use results in lower lateral earth pressures. The imported granular materials should be placed to within 2 to 3 feet of the ground surface. Imported granular soils should be free draining and have less than 7 percent passing the No. 200 sieve. The granular soils behind foundation and retaining walls should be sloped from the base of the wall at an angle of at least 45 degrees from the vertical. The upper 2 to 3 feet of fill or the fill materials placed adjacent to the shorter walls should be a relatively impervious clay or pavement structure to prevent surface water infiltration into the backfill.

Wall backfill should be carefully placed in uniform lifts and compacted to at least 95 % of the maximum standard Proctor density and within 2% of the optimum moisture content. Care should be taken not to overcompact the backfill since this could cause excessive lateral pressure on the walls. Some settlement of deep foundation wall backfill materials will occur even if the material is placed correctly.

13.0 SITE DRAINAGE RECOMMENDATIONS

Proper surface drainage at these lots is of paramount importance for minimizing the infiltration of surface drainage into the wall backfill and bearing soils, which could result in increased wall pressures, differential foundation and slab movement. The following drainage precautions should be observed during construction and at all times after the structures have been completed:

- 1) Ground surface surrounding the structures should be sloped (minimum of 1.0 inch per foot) to drain away from the structure in all directions to a minimum of 10 feet. Ponding must be avoided. If necessary, raising the top of foundation walls to achieve a better surface grade is advisable.
- 2) Non-structural backfill placed around the structures should be compacted to at least 95% of the maximum standard Proctor density at or near the optimum moisture content in order to minimize future settlement of the fill. Backfill should be placed immediately after the braced foundation walls are able to structurally support the fill. Puddling or sluicing must be avoided.
- 3) Top 2 to 3 feet of soil placed within 10 feet of the foundations should be impervious in nature to minimize infiltration of surface water into the wall backfill.

- 4) Roof downspouts and drains should discharge well beyond the limits of all backfill. Roof overhangs, which project two to three feet beyond the foundations, should be considered if gutters are not used.
- 5) Landscaping, which requires excessive watering and lawn sprinkler heads, should be located a minimum of 10 feet from the foundation walls of the structures.
- 6) Plastic membranes should not be used to cover the ground surface adjacent to foundation walls.

14.0 SITE GRADING RECOMMENDATIONS

Any fill materials placed beneath the interior floor slabs, exterior flat work, pavement areas or underground utilities should be compacted to at least 95 percent of the maximum standard Proctor density and within 2 percent of the optimum moisture content as determined in accordance with ASTM D698/AASHTO T99. The fills placed in these areas should not contain boulders, topsoil, organics or other deleterious substances. The fill materials placed in the landscaped areas should be compacted to at least 90 percent of the maximum standard Proctor density. The materials not suitable for use under the building and pavement areas should be placed in the bottom of the fills in landscaped areas, where some settlement can be tolerated.

Site grading should be carefully planned to provide positive surface drainage away from all of the buildings and pavement areas. The buildings and pavement areas should be placed as high as possible on the sites so that positive drainage away from these structures can be provided. Surface diversion features should be provided around the paved areas to prevent surface runoff from flowing across the paved surfaces.

Although site grading plans for each of the lots were not available at the time of this report, we have assumed that cuts and fills of up to 3 to 5 feet in depth may be required to develop the individual lots. We recommend that the final fill slopes not exceed 2 (H) to 1 (V) configuration if they are properly compacted and drained. Positive surface drainage should be provided around all permanent cut and fill slopes to direct surface drainage away from the slope faces. All cut and fill slopes and other stripped areas should be protected against erosion by revegetation or other methods.

Temporary cuts for foundation and utility construction should be constructed to OSHA standards for temporary excavations.

15.0 LIMITATIONS

The recommendations provided in this report are based on the subsurface conditions encountered in the test holes and pits excavated across the project site, our assumptions regarding the proposed construction and the behavior of structures at neighboring, similar sites.

We believe that this information gives a high degree of reliability for anticipating the behavior of the proposed structures; however, our recommendations are professional opinions and cannot control nature, nor can they assure the soils profiles beneath those or adjacent to those observed. No warranties expressed or implied are given on the content of this report.

Moderately to highly expansive clays were encountered within this phase of the subdivision. These clays are stable at their natural moisture content but can shrink or swell with changes in moisture. The behavior of swelling soils is not fully understood. The swell potential of any particular site can change erratically both in lateral and vertical extent. Moisture changes also occur erratically, resulting in conditions, which cannot always be predicted. The recommendations presented in this report are based on the current state of the art for foundations and floor slabs on expansive soils. The owners/buyers should be made aware that there is a risk in construction on these types of soil.

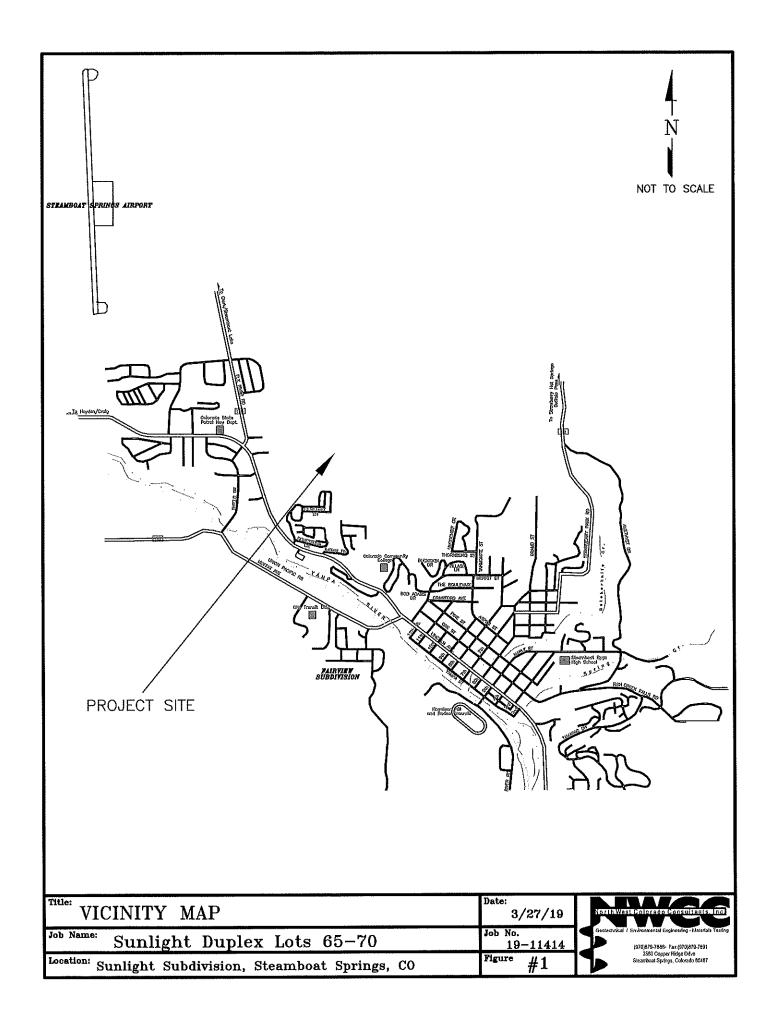
Performance of the structures will depend on following the recommendations and in proper maintenance after construction is complete. As water is the main cause for volume change in these soils, it is necessary that the changes in moisture content be kept to a minimum. This requires judicious irrigation and providing positive surface drainage away from the structures. Any distress noted in the structures should be brought to the attention of this office.

This report is based on the investigation at the described site and on the specific anticipated construction as stated herein. If either of these conditions is changed, the results would also most likely change. Therefore, we strongly recommend that our firm be contacted prior to finalizing the construction plans so that we can verify that our recommendations are being properly incorporated into the construction plans. Man-made or natural changes in the conditions of a property can also occur over a period of time. In addition, changes in requirements due to state of the art knowledge and/or legislation do from time to time occur. As a result, the findings of this report may become invalid due to these changes. Therefore, this report is subject to review and not considered valid after a period of 3 years or if conditions as stated above are altered.

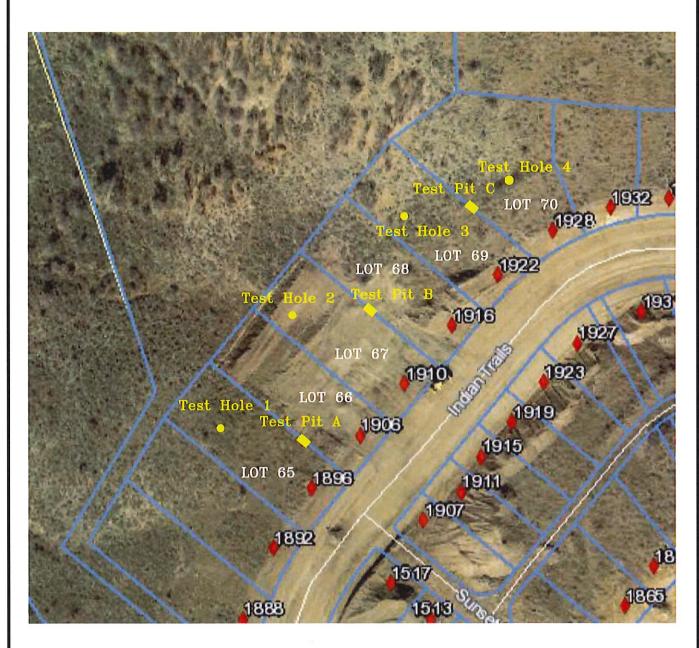
It is the responsibility of the owner or his representative to insure that the information in this report is incorporated into the plans and/or specifications and construction of the project. It is advisable that a contractor familiar with construction details typically used to dealing with the local subsoils and climatic conditions be retained to build the structures.

If you have any questions regarding this report or if we may be of further service, please do not hesitate to contact us.

Sincerely,

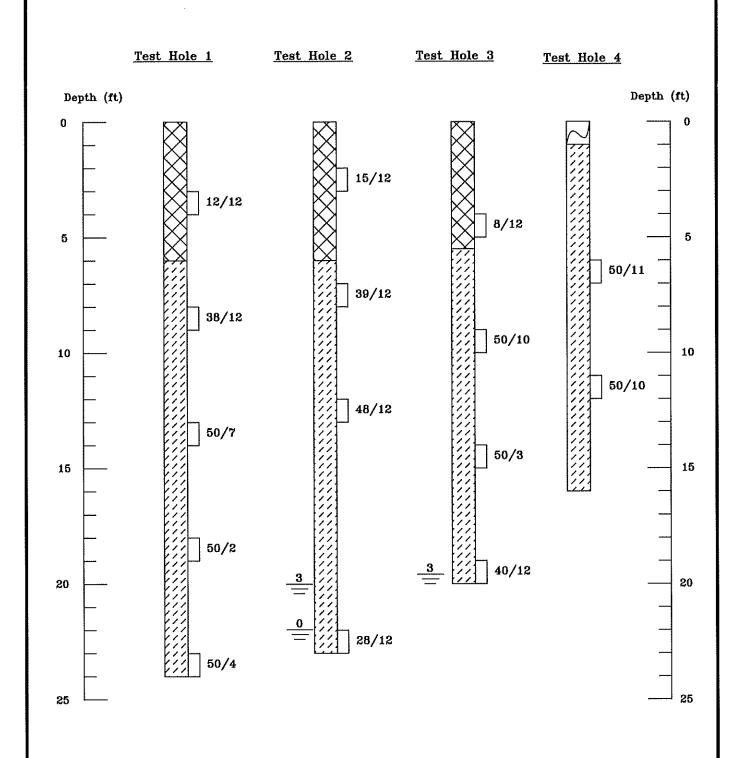

NWCC, Inc.

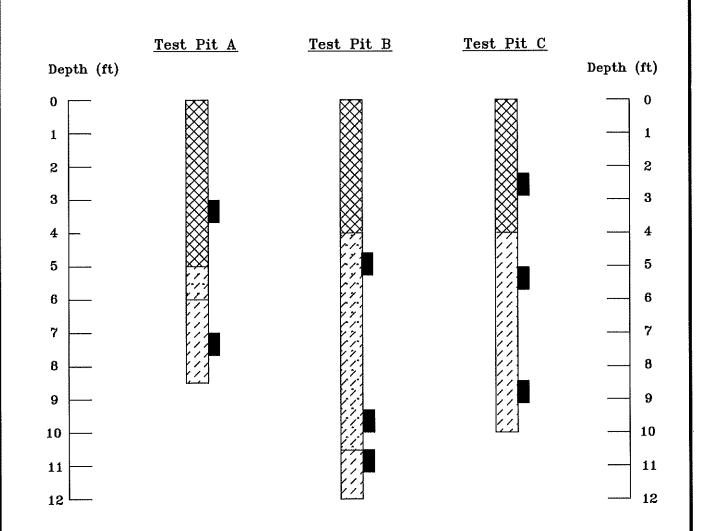
Erika K. Hill, E


Project Engine

Reviewed by Brian D. Iden, P. Principal Engineers 4219

cc: Nick Metzler



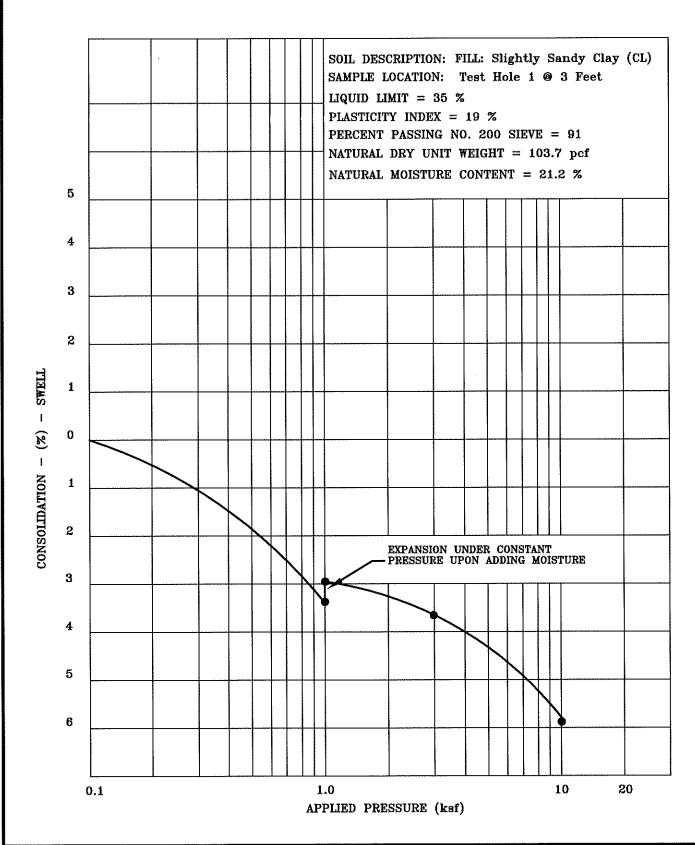


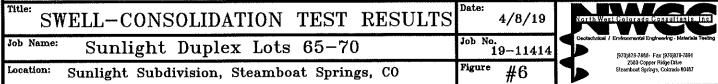
Title: SITE PLAN — TEST PIT AND TEST HOLE LOCATIONS	Date: 3/27/19	North We
Job Name: Sunlight Duplex Lots 65-70	Job No. 19-11414	Geotechnical
Location: Sunlight Subdivision, Steamboat Springs, CO	Figure #2	9

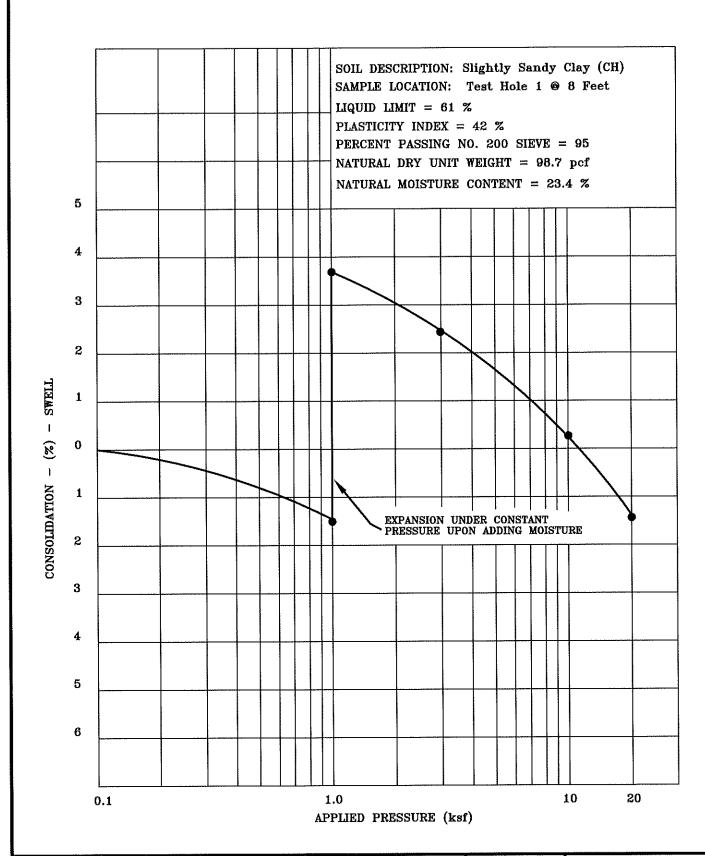
(970)879-7888 Fax (970)879-7891 2580 Copper Ridge Drive Steamboat Springs, Colorado 80487

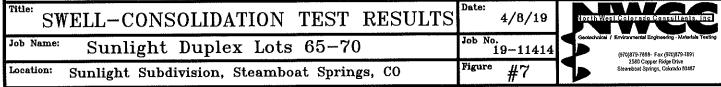
LOGS OF EXPLORATORY TEST HOLES	Date: 3/27/19	North West Colorado Consultants Inc
Job Name: Sunlight Duplex Lots 65-70	Job No. 19-11414	Geotechnical / Emvironmental Engineering - Materials Testing (970)879-7888- Fax (970)879-7891
Location: Sunlight Subdivision, Steamboat Springs, CO	Figure #3	2580 Copper Ridge Ditivo Steamboat Springs, Colorado 80487

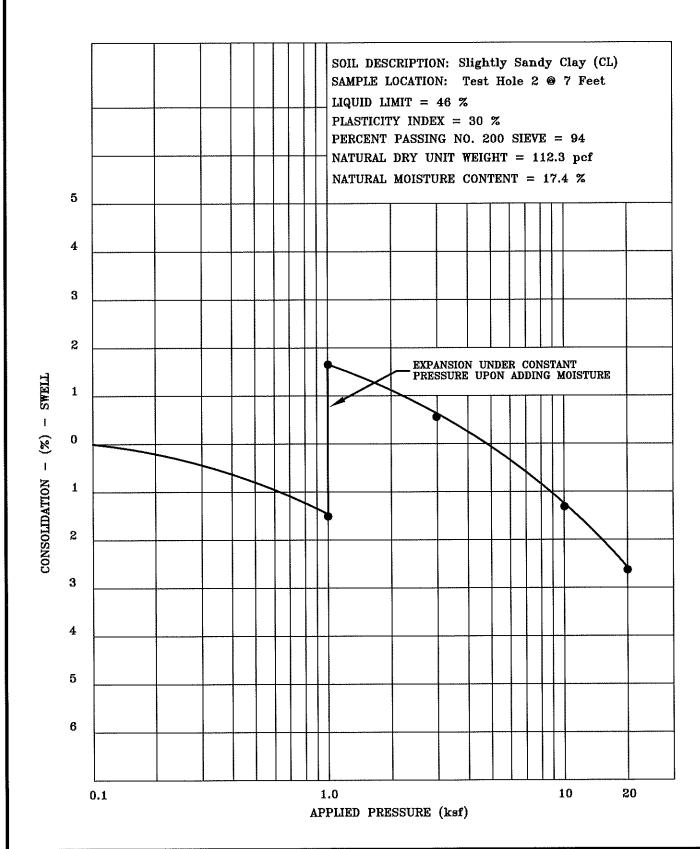
TEST PIT LOGS, LEGEND AND NOTES	Date: 4/12/19 North West Colorado Consultants, inc.
Job Name: Sunlight Duplex Lots 65-70	Job No. 19-11414 Geotactivitical / Environmental Engineering - Materials Testing (970)875-7886 - Fax (970)879-7881
Location: Sunlight Subdivision, Steamboat Springs, CO	Figure #4

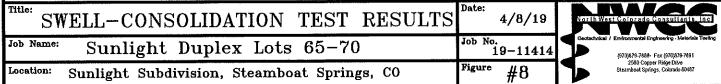

TOPSOIL AND ORGANICS. FILL: Clays with occasional organics, gravels and bedrock fragments, nil to sandy, moderately to highly plastic, medium stiff to stiff, very moist to moist and brown to dark brown. ORGANIC CLAYS: Nil to slightly sandy with roctlets, low plastic, soft to medium stiff, moist, brown to dark gray in color, with slight organic odor. CLAYS: Nil to sandy with occasional gravel lenses, low to highly plastic, fine to coarse grained with occasional cobble to boulder-sized bedrock fragments, very stiff to hard, moist to very moist, calcareous and lbrown to tan. California Liner Hand Drive Sample. Drive Sample, 2-inch I.D. California Liner Sampler.

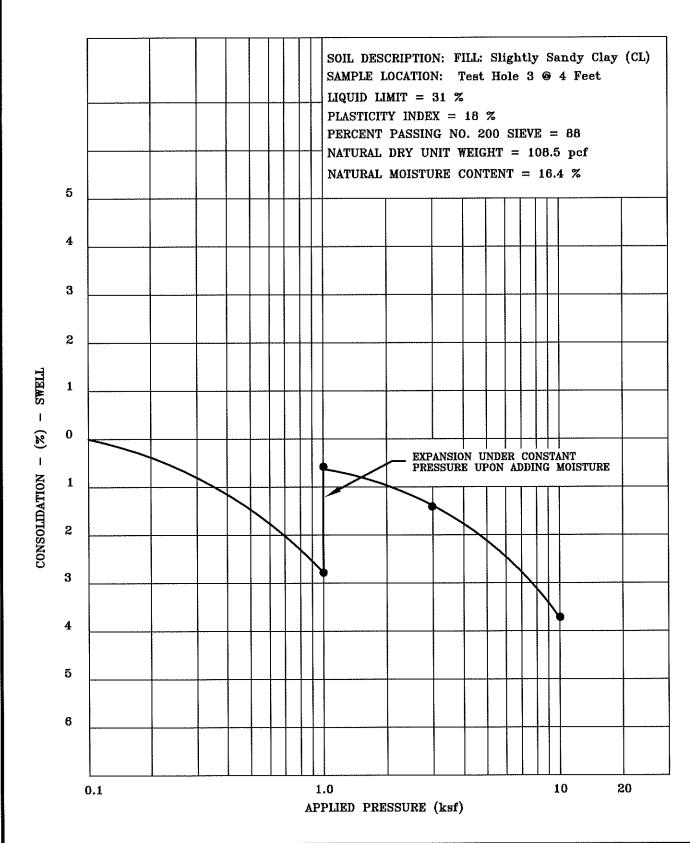

- 12/12 Drive Sample Blow Count, indicates 67 blows of a 140-pound hammer falling 30 inches were required to drive the sampler 8 inches.
- O,3
 Indicates depth at which groundwater was encountered at the time of drilling and when measured 3 days after drilling.

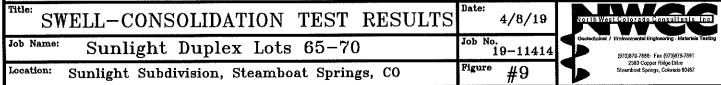

NOTES:

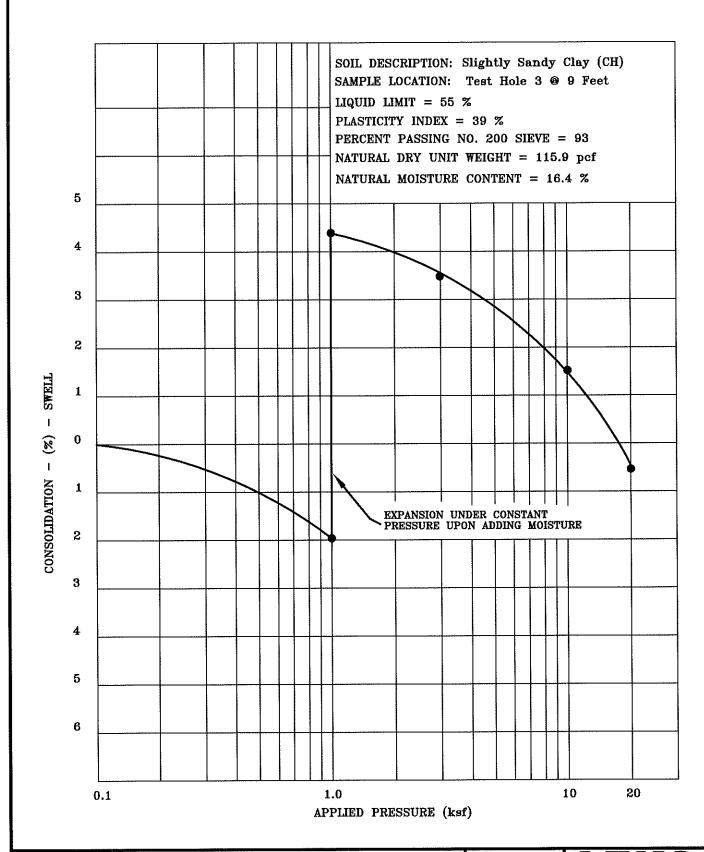

- 1) Test holes were drilled on March 25, 2019 with an all terrain drill rig using 4-inch diameter continuous flight augers. Test pits were excavated on September 11, 2018 with a Komatsu PC 400 LC trackhoe.
- 2) Locations of the test holes and pits were determined in the field by pacing from exixting features at the site.
- 3) Elevations of the test holes and pits were not measured and logs are drawn to the depths investigated.
- 4) Lines between materials shown on the logs represent the approximate boundaries between material types and transitions may be gradual.
- 5) Water level readings shown on the logs were made at the time and under the conditions indicated. Fluctuations in the water levels will likely occur with time.

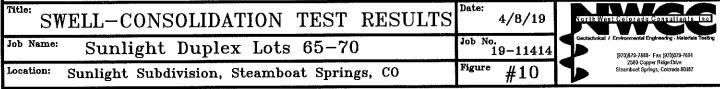

LEGEND AND NOTES	Date: 4/12/19	North West Colorado Consultants, Inc.
Job Name: Sunlight Duplex Lots 65-70	Job No. 19-11414	Geotechnical / Emfronmental Engineering - Materials Toeting (970)879-7888 - Fax (970)879-7881
Location: Sunlight Subdivision, Steamboat Springs, CO	Figure #5	2580 Copper Ridge Drive Steamboat Springs, Colorado 80487

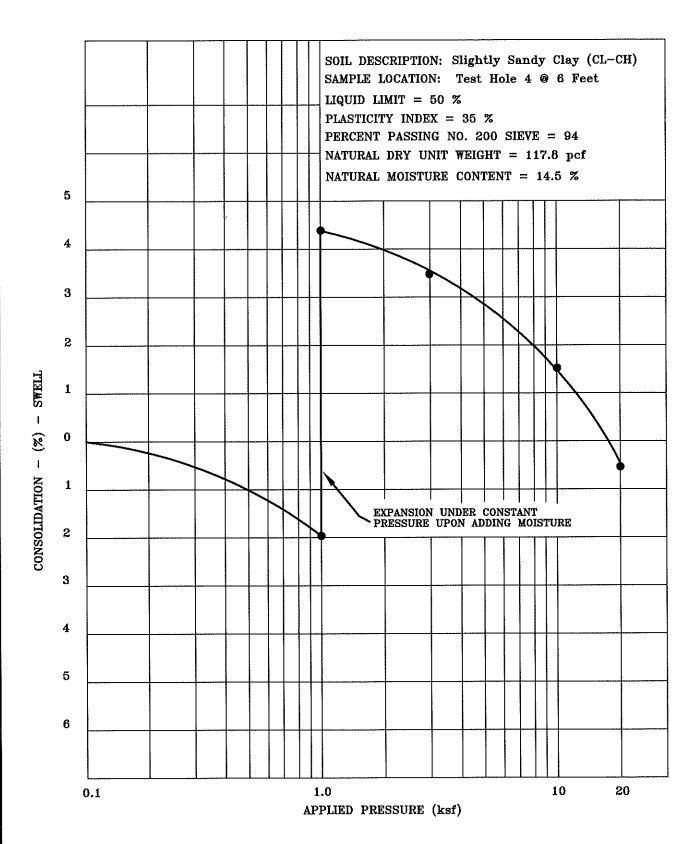


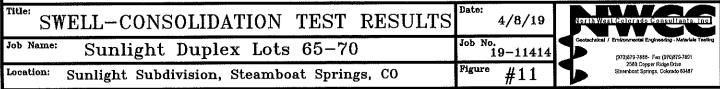


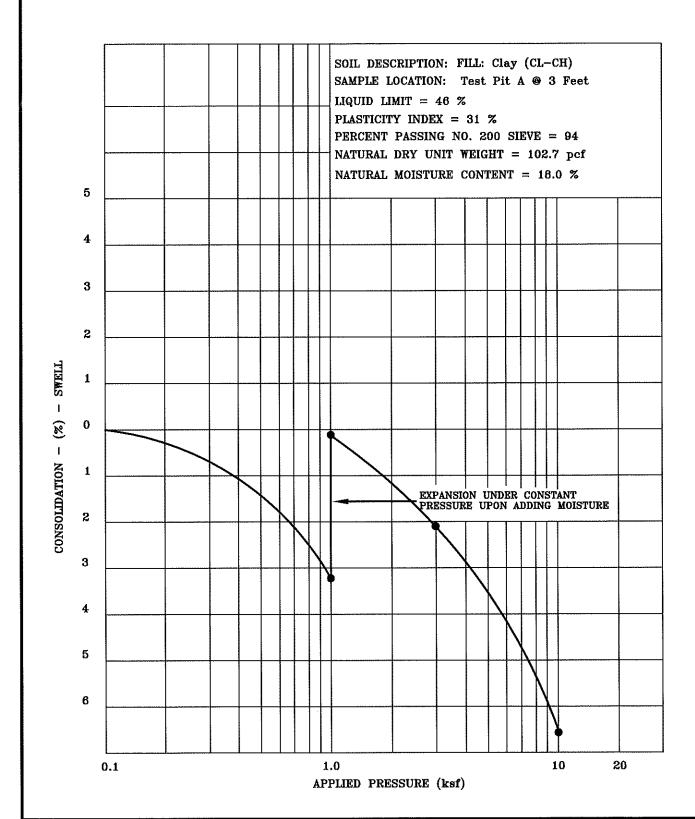


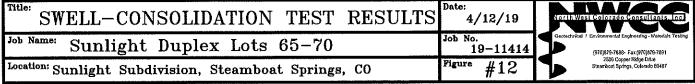


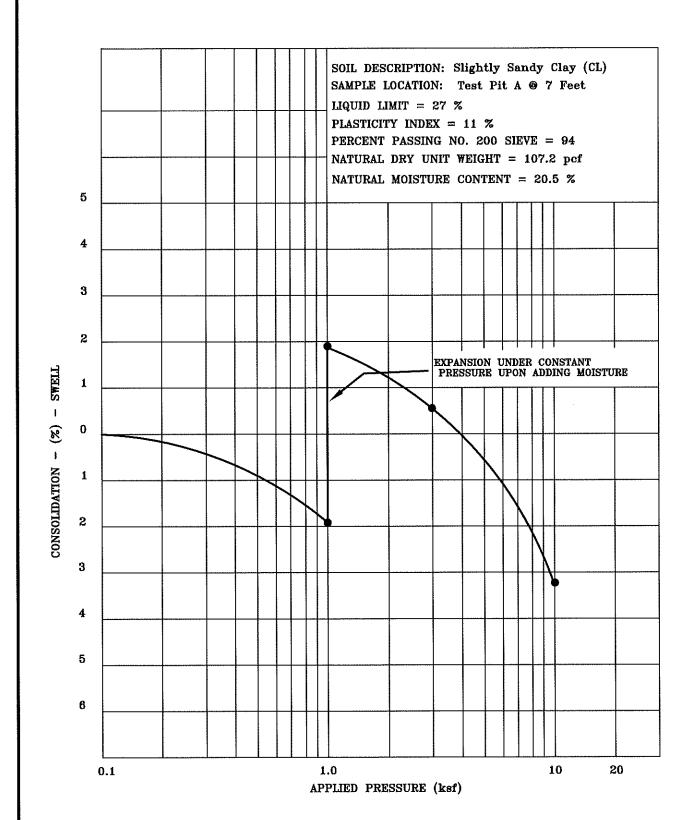


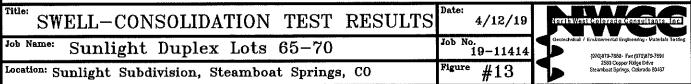


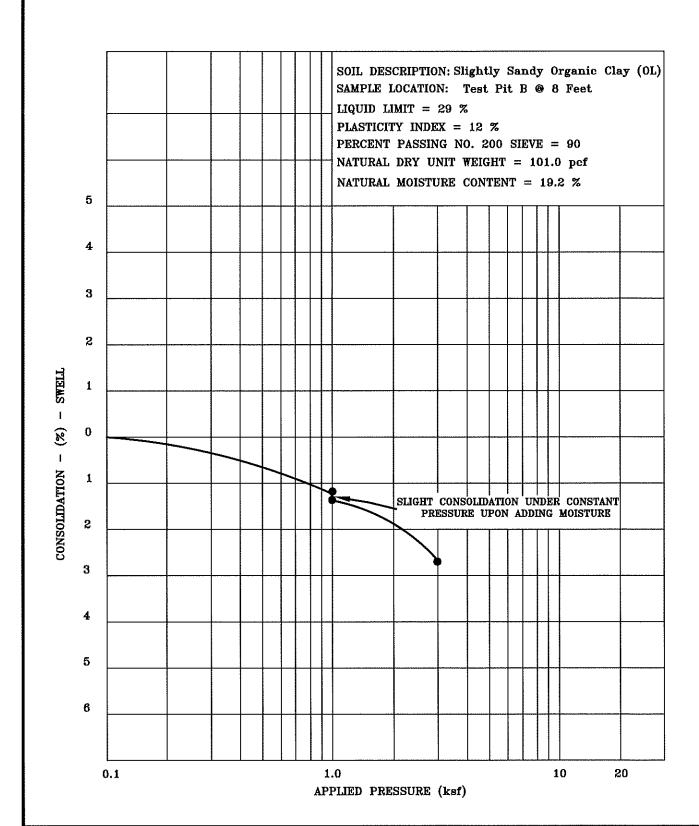


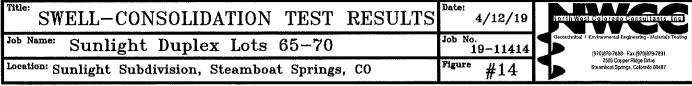


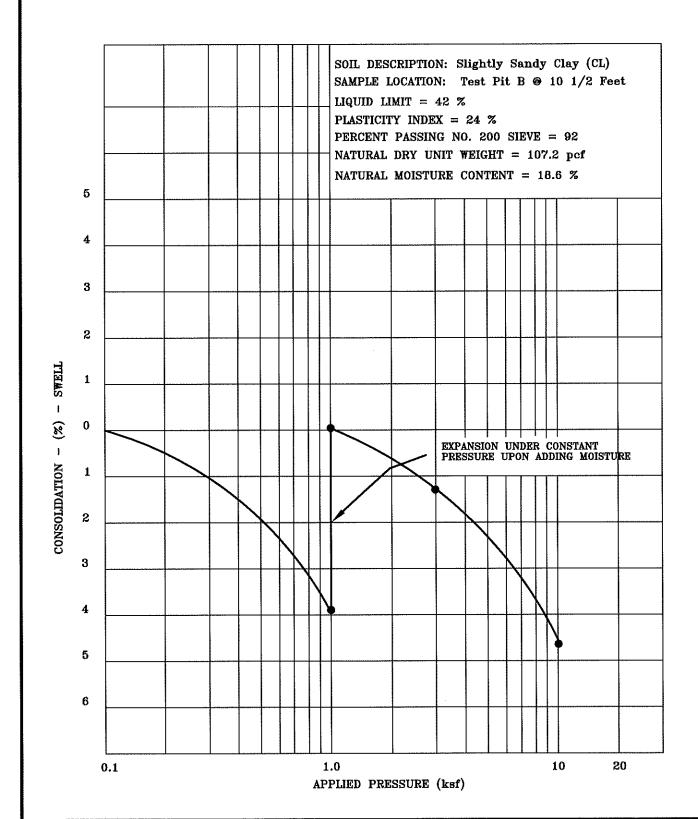


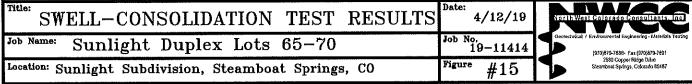


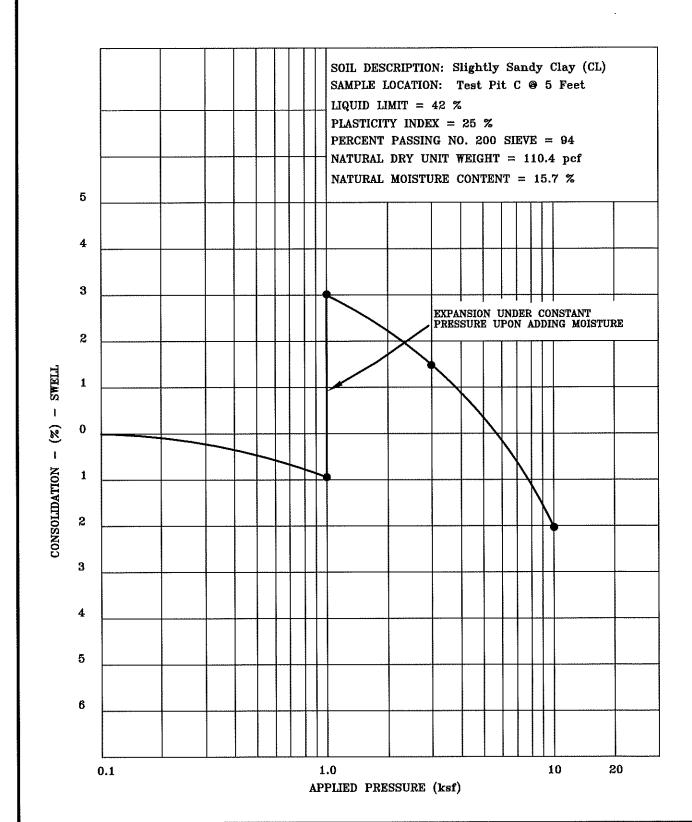


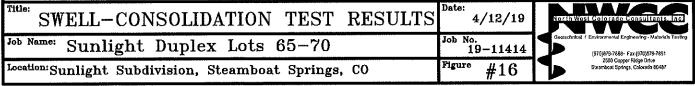


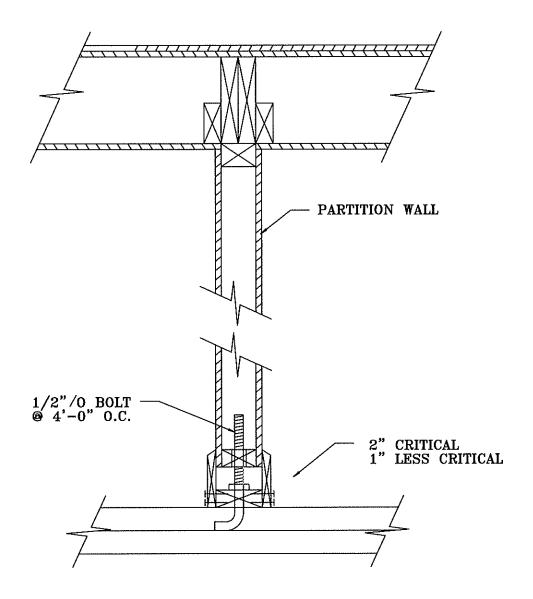


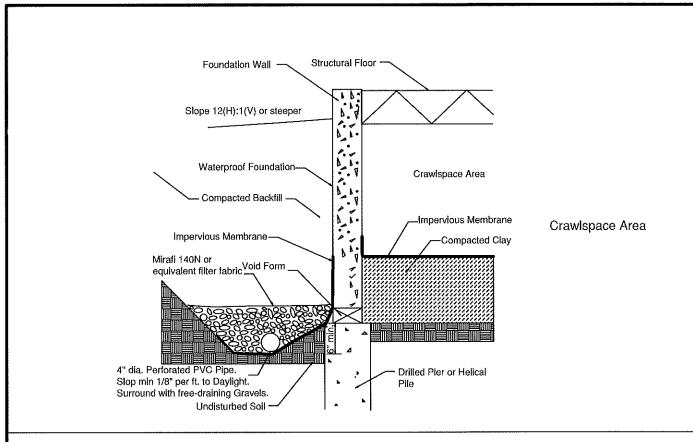


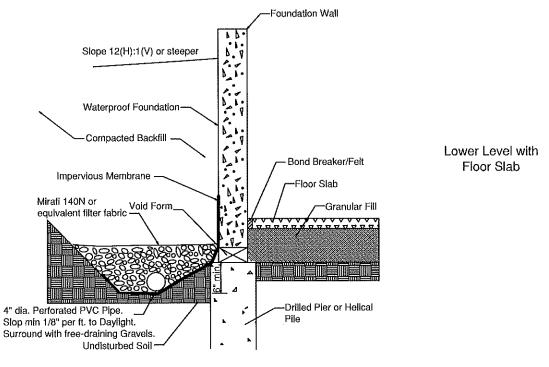












HUNG PARTITION WALL DETAIL	Date: 4/12/19 North West Colorado Consultants, Inc.
Job Name: Sunlight Duplex Lots 65-70	Job No. 19—11414 (970)\$79-7868- Fax (970)\$79-7861
Location: Sunlight Subdivision, Steamboat Springs, CO	Figure #17

PERIMETER/UNDERDRAIN DETAIL	Date: 4/12/19	North Wast Colorado Consultante, Inc.
Job Name: Sunlight Duplex Lots 65-70	Job No. 19-11414	Geotechnical 7 Environmental Engineering • Materials Tosting (970)879-7888 • Fax (970)879-7891
Location: Sunlight Subdivision, Steamboat Springs, CO	Figure #18	2580 Copper Rklige Drhva Steamboat Springs, Colorado 80487

NWCC, Inc.

TABLE 1, PAGE 1

SUMMARY OF LABORATORY TEST RESULTS

UNIFIED	SOIL CLASS.		CI	СН	CT	To	CH	нэ-тэ	
SOIL or BEDROCK DESCRIPTION		FILL: Slightly Sandy Clay	Slightly Sandy Clay	Slightly Sandy Clay	FILL: Slightly Sandy Clay	Slightly Sandy Clay	Slightly Sandy Clay		
UNCONFINED COMPRESSIVE STRENGTH (psf)									
TIMED CERT	PASSING No. 200 SIEVE		91	95	94	88	93	94	
VIION	SAND (%)		6	ಬ	ro.	11	7	5	
GRADATION	GRAVEL (%)		0	0	-	1	0	1	
RBERG LIMITS	PLASTICITY INDEX (%)		18	42	30	18	39	35	
ATTERBER	LIQUID LIMIT (%)		35	61	46	31	55	50	
17 011111111111111111111111111111111111	NATURAL DRY DENSITY (pcf)		103.7	109.4	112.3	108.5	115.9	117.8	
11000	MOISTURE CONTENT (%)		21.2	23.4	17.4	20.0	16.4	14.5	
LOCATION	DEPTH (feet)		3	8	7	4	6	9	
SAMPLE L	TEST HOLE		1	-	2	3	င	4	

JOB NUMBER: 19-11414

JOB NUMBER: 19-11414

NWCC, Inc.

TABLE 1, PAGE 2

SUMMARY OF LABORATORY TEST RESULTS

UNIFIED	SOIL CLASS.	CL-CH	To Ci	 70		CT	CF		
SOIL OF BEDROCK		FILL: Clay	Slightly Sandy Clay	Slightly Sandy Organic Clay		Slightly Sandy Clay	Slightly Sandy Clay		
UNCONFINED COMPRESSIVE STRENGTH (psf)									
	PASSING No. 200 SIEVE	94	94	06		85	94		
GRADATION	SAND (%)	ಕ	9	10		8	9		
GRAD.	GRAVEL (%)	3	0	0		0	0		
G LIMITS	PLASTICITY INDEX (%)	31	11	12	-	24	 25		
ATTERBERG	LIQUID LIMIT (%)	46	27	29		42	42		
	DENSITY (pcf)	102.7	107.2	101.0		101.5	110.4		
NA CONTRACTOR AT	MOISTURE CONTENT (%)	18.0	20.5	19.2		18.6	15.7		
LOCATION	DEPTH (feet)		7	8		10 1/2	5		
SAMPLE I	TEST PIT	A	A	В		Д	ပ		